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Abstract. We generalize the well known Merton-Vasicek (KMV) model of
a loan portfolio value in two ways: we assume a Lévy process of the debtors’
assets’ value (instead of the Gaussian one) and we model a dynamics of the
portfolio value so that the debts may last several periods (instead of a single
one). Our model is computable by simulation.
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1 The Merton-Vasicek Model

Vasicek, in his famous paper [O.A.Vasicek(2002)], assumes a large portfolio of loans. The assets Ai of the
i-th debtor follow the geometric Brownian motion

dAiτ
Aiτ
= µdτ + σdW i

τ (1)

where µ and σ are constants and W i
t is the standard Wiener process. It is further assumed that the

debtor is obliged to pay a (non-random) instalment Bti at each of the times t ∈ N.

By solving (1) and subtracting the annual payment, we get

ait = a
i
t−1 + η

i
t +X

i
t , ait = logA

i
t, ηit = µ−

1

2
σ2 − logBit (2)

where Xi
t = σ(W

i
t −W

i
t−1) is centred normal random variable with variance σ

2. Clearly, the (conditional)
probability pit of the default of the i-th debtor is

pit = P(ait < 0|a
i
t−1) = ξ

i
t(−a

i
t−1 − η

i
t−1)

where ξit is the cumulative distribution function (c.d.f.) of X
i
t .

Further, it is assumed by Vasicek, that

corr(Xi
t , X

j
t ) = ρ (3)

for any i 6= j and some ρ. It is easy to see that the latter assumption is fulfilled, for instance, if there exist
mutually independent (normal) variables Yt, Z

1
t , Z

2
t , . . . , (independent of the evolution of the debtors’

assets up to t− 1) such that Z1t , Z
2
t , . . . are equally distributed and

Xi
t = Yt + Z

i
t , i ∈ N, (4)

such that varYt = ρvarX
1
t and varZ

1
t = (1− ρ)varX

1
t - to see it, note that

corr(Xi
t , X

j
t ) =

varYt
varZit + varYt

. (5)

Further, if the number of the debtors is very large, and if, for all i, ait = at and η
i
t = ηt for some at and

ηt (or, more generally, p
i
t = pt for some pt) then, by the Law of Large Numbers, the percentage loss Lt

of the bank is conditionally constant given Yt, at−1:

Lt
.
= ψt (−at−1 − ηt − Yt) (6)
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where ψt is the c.d.f. of Z
1
t and, consequently, by the Complete Probability Theorem,

P(Lt < θ|pt)
.
= 1− φt

(

−at−1 − ηt − ψ
−1
t (θ)

)

(7)

= 1− φt
(

ξ−1t (pt)− ψ
−1
t (θ)

)

(see [O.A.Vasicek(2002)] for details).

2 A Generalization

We generalize the Merton-Vasicek model two ways: we release the assumption of the normality of the
factors and we take the dynamics of the system into account, making pt’s endogenous and no longer
requiring the identical initial states of the borrowers’ assets. Our goal is to describe the distribution of
the losses by specifying the conditional distribution function of Lt given

L̄t = (L1, L2, . . . Lt)

for each t.

For a greater mathematical rigour, we assume the infinite number of loans in the portfolio rather than
their “large amount”.

To model the dynamics realistically, we assume that there is a certain amount of newly acquired
deals at the beginning each period: we denote πt the L̄t-measurable variable determining the ratio of the
loans new at t to their overall amount (the overall amount including the new ones plus the existing ones
excluding those which have defaulted at the time t). We assume the assets of a newly coming debtor to
be distributed according to a common continuous and strictly increasing conditional c.d.f. γt given L̄t
and we suppose the assets of all the newcomers be mutually conditionally independent given and L̄t.

Remark 1. We express this (more rigorously) as follows: Let t ∈ N and let, for each i ∈ N, there exist a
Bernoulli variable Iit with a parameter πt; if I

i
t = 1 then a newly coming loan will be indexed by i during

the period from t to t+1; if, on the other hand, Iit = 0, then the first existing loan out of those which did
not default at t and which are still not indexed will be indexed by i. Naturally, I1t , I

1
2 , . . . are required to

be mutually conditionally independent given L̄t and independent of all Y• and Z
•

•
.

Let t, i ∈ N. Coping with the reindexing, we reformulate (2) as

ãit = a
i
t−1 + η

i
t +X

i
t , (8)

where ηit is an arbitrary value (including the installment if there is any), a
i
t−1 and ã

i
t are the values of the

log assets of the i-th debtor at the time t−1, t respectively1 and Xi
t is given by (4). The variables Yt and

Z1t do not have to be normal now but it is only required that their conditional distribution functions φt
and ψt are strictly monotonic and continuous.

2 Later (Section 3) we show how (8) arises naturally from
a generazitation of (1).

Naturally, we define the percentage loss as

Lt = lim
n→∞

1

n

∞
∑

i=1

1[ãit < 0].

t ∈ N, in our new infinite setting.

Getting to the distribution of the series L1, L2, . . . ., let us assume a
1
0, a

2
0, . . . are i.i.d (with a strictly

increasing continous c.d.f. α0).

To describe the distribution, we shall proceed by induction:

Let t ∈ N and assume that

1Remember that a debtor may be indexed by different index in different periods; here, i is the index valid from t− 1 to
t.
2Depending on the normallity no way, both (7) and ( 5) keep holding (with = instead of

.
=) even under the generalized

conditions.
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(1) we know the the (joint) distribution of L̄t−1

(2) the variables a1t−1, a
2
t−1, . . . are identically conditinally distributed and mutually condi-

tionally independent given L̄t−1

(3) the conditional distribution function αt−1 of a
1
t−1|L̄t−1 is known to us.

Based on the assumptions, let us determine the distributions of Lt|L̄t−1 and a
•

t |L̄t.

Note first that, since Yt, Z
1
t , Z

2
t , . . . are independent of (L̄t−1, a

1
t−1, a

2
t−1, . . . ), all the variables

Z1t , a
1
t−1, Z

2
t , a

2
t−1 . . .

are mutually conditionally independent given (L̄t−1, Yt). In particular, for any i ∈ N, the conditional
distribution of Żit = a

i
t−1+Z

i
t given L̄t−1 is given by the convolution of the distributions of the summands,

hence, for any s ∈ R,

P[ãit < s|L̄t−1, Yt] = P[Żit < s− ηt − Yt|L̄t−1, Yt] = Ψt(s)

Ψt(s) = ψ̃t(s− ηt − Yt), ψ̃t = αt−1 ◦ ψt,

and, similarly,

ṗt = P[ãit < 0|L̄t−1] = Ξt(−ηt)

where Ξt = αt−1 ◦ ψt ◦ φt.

Moreover, Ż1t , Ż
2
t , . . . are mutually conditionally independent given (L̄t−1, Yt), which implies, by the

Law of Large Numbers, applied to the conditional distributions of Ż•t , that Lt is conditionally constant
given (L̄t−1, Yt) with

Lt = P[ãit < 0|L̄t−1, Yt] = Ψt(0)

Applying the Complete Probability Theorem and the independence of L̄t−1 and Yt, we finally get

P[Lt < θ|L̄t−1] =

∫

P[Lt < θ|L̄t−1, y]dPYt
(y)

=

∫

P[ψ̃t(−ηt − y) < θ|L̄t−1, y]dPYt
(y)

=

∫

P[−ψ̃−1t (θ)− ηt < y|L̄t−1, y]dPYt
(y) (9)

=

∫

−ηt−ψ̃
−1

t
(θ)

dPYt
(y) = 1− φt(−ηt − ψ̃

−1
t (θ))

= 1− φt(Ξ
−1
t (ṗt)− ψ̃

−1
t (θ)).

To completely describe the distribution of the losses, it remains to specify αt (i.e. the c.c.d.f of a
1
t ) which

we do in the following Lemma:

Lemma 1. It follows that a1t , a
2
t , . . . are conditionally independent given L̄t and

αt(s) = πtγt(s) + (1− πt)ζt(s), ζt(s) =
Ψt(s−Ψ

−1
t (Lt))− Lt
1− Lt

. (10)

Proof. Denote âit the i-th existing loan which has not defaulted at t. We show that â
1
t , â

2
t , . . . are mutually

conditionally independent given L̄t with common c.c.d.f. ζt ; the Lemma will then follow by the textbook
probability calculus. Before doing so, however, let us mention an easily provable fact:

Auxiliary assertion. Let u and v be independent unit uniform and let c ∈ (0, 1) be an independent random
variable. Then the variable

υu,v,c =

{

u if u < c

c+ v(1− c) otherwise
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is unit uniform independent of c.

Returning to the main proof, let u1, v1, u2, v2, . . . be mutually independent unit uniform variables, inde-
pendent of L̄t and of the assets of all newcomers. By [Pollard(2002)] p. 238, [Kallenberg(2002)] Theorem
6.10 and our Auxiliary assertion, the distribution of L̄t, ã

1
t , ã

2
t , . . . will not change if ã

i
t = Ψ

−1
t (υui,vi,Lt

).
Hence let us assume the last equality and note that

ãit < 0⇔ υui,vi,Lt
< Ψt(0)⇔ ui < Ψt(0)⇔ ui < Lt

If all L̄t, u1, u2, . . . were deterministic then, for any i, â
i
t = Ψ

.1
t (Lt + vj(1 − Lt)) = ζ−1t (vj) for some j

i.e. ζt would be a c.d.f. of â
i
t and it could be easily checked that â

1
t , â

2
t , . . . are independent; however,

this implies, by [Hoffmann-Jørgenson(1994)]4.5.2, that ζt is a conditional c.d.f. of â
i
t for any i and that

â1t , â
2
t , . . . are conditionally independent given L̄t.

By the initial assumptions, (9) and (10), we have completely described the distribution of L.

3 The Geometric Lévy Assets

In the present Section we show that our generalization is suitable in the case that the assets of the
individuals follow a geometric Lévy, instead of a geometric Brownian, motion.

Before doing so, let us stay with the Brownian model for a while and note, even if it is not a necessary
condition for the validity of the assumptions of the model, that it is quite natural to assume that W i =
U0+U i where U0 and U i are independent Brownian motions (the first playing role of the common factor,
the latter being the individual one) - clearly, U1, U2, . . . have to be equally distributed. Reflecting this
and preparing for discontinuous paths, we may rewrite the evolution of the assets of the i-th borrower as

dAit
Ait−

= µdt+ dU0t + dU
i
t , (11)

Getting back to our generalization, we no longer require U0, U1, . . . to be Brownian but we allow
them to be Lévy processes with EU i1 = 0, varU

i
1 < ∞. Since the variances of both U1, U2 at the unit

time are finite, so have to be their absolute moments at finite times implying the i-th process to possess
a Lévy decomposition

U it = ςiW
i
t + Jt, Jt =

∫

∞

−∞

zN i(t.dz)

whereW i
t is a standard Wiener process N

i is a compensated Poisson measure given by a Lévy measure νi
(see e.g. [Oksendal and Sulem(2004)] or [Kallenberg(2002)] for the notions of Poisson and Lévy measures
and the Lévy decomposition). Clearly ν1 = ν2 = . . . .

Lemma 2. Under our assumptions, (8) holds with

ηit = µ−
1

2

(

|ν0|+ ς
2
0 + |ν1|+ ς

2
1

)

− logBit

Yt = ς0H
0
t +

∫ 1

0

∫

∞

−∞

[log(1 + s)− s]N0t (ds, dz)

Zit = ς0H
i
t +

∫ 1

0

∫

∞

−∞

[log(1 + s)− s]N i
t (ds, dz)

where, for any i ∈ N, Hi
t is standard normal and N

i
t is a compensated Poisson measure given by νi such

that H0t , N
0
t , H

1
t , N

1
t , . . . are mutually independent.
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Proof. Fix i ∈ N and denote Vτ = µ(τ − t) +U
0
τ−t +U

i
τ−t, τ ≥ 0. Clearly, V is a Lévy process with Lévy

decomposition

Vτ = µt+ θW + Jt, θ =
√

ς20 + ς
2
1 , Wτ = θ

−1(ς0W
0
t−τ + ς1W

i
τ−t),

Jτ = J
0
τ−t + J

i
τ−t.

Evidently,W is a standard Wiener process and J is a compensated Lévy jump process with Lévy measure
ν = ν0 + νi.

The evolution of the assets clearly fulfils

dAit+τ

Ait+τ−
= dVτ

with the solution, according to [Oksendal and Sulem(2004)] 1.15, given by

At+τ = At exp{(µ−
1

2
θ2)τ + θWτ

+

∫ τ

0

∫

∞

−∞

(log(1 + s)− s)ν(dz)ds

+

∫ τ

0

∫

∞

−∞

(log(1 + s)− s)[N0t (ds, dz) +N
i
t (ds, dz)]}

= At exp{(µ−
1

2
θ2)τ + ς0W

0
τ + ς1W

i
τ

+[
1

1 + τ
− 1−

τ2

2
]|ν0 + ν1|

+

∫ τ

0

∫

∞

−∞

(log(1 + s)− s)[N0t (ds, dz) +N
i
t (ds, dz)]}.

By putting τ = 1 and subtracting logBit we get the Lemma.

In fact, the Lemma says that, as in the original model, the value of a borrower’s assets depends on a
common and an individual factors. However, the distributions of the factors are not the same as those of
an increments of corresponding ”driving” processes U• as at the original model.

It remains to note that, generally, there are not closed formulas for distribution functions corresponding
to variables Yt and Z

1
t hence a MC simulation has to be used, possibly requiring special treatment, espe-

cially in the case of “jump” parts of the variables - for more on this topic, see [Cont and Tankov(2008)],
Part II.

4 Conclusion

Summarized, we have formulated the dynamical version of the Merton-Vasicek model. Even if our results
are not closed form, the model is tractable by simulation.
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